Summary

188 views 8:21 am 0 Comments May 1, 2023

A five-storey office has the general layout shown in Figure 1. In addition to the self-weight of the structural members, a superimposed dead load of 1 kPa should be allowedfor. The live load rating of the office floor is 3 kPa. The roof should be designed for asuperimposeddeadloadof0.5kPaandliveloadratingof1kPa.Windloadisassumedtobe resisted by the shear walls located at the edges of the building and need not beconsidered.

Designforatypicalfloorslab,beamandcolumn.Youarerequiredtoprovidetwooptions:

Reinforcedconcreteslabsupportedbyreinforcedconcrete beamsandcolumns

Reinforcedconcreteslabsupportedbysteelbeamsand columns.

Note:

Ifyoudecidetochangethebeamlayoutforthesteeloptions,thereinforcedconcrete slab should normally be re-designed.You are not required to redesignthe slab for this assignment but you should take into account the change ofthickness(andhenceself-weight)inyourdesign.

Theslabcannotbeassumedtoprovidecontinuouslateralrestraintsforthesteelbeams.

The design should be supported by calculations to ensure that the slab, beams andcolumns and their connections (when applicable) are adequate in resisting the designload. The calculations for any horizontal bracings, should they be used in the designoption ii, are not required for this assignment. However, the locations and details oftheirconnectionshould beincluded inthefinaldrawings

Summary

This report is the part 1 of the continuous assignment and contains three individual task. Themain objective of this report is to understand the application of Space Gass for calculating themaximumbending moment and reaction forces. Furthermore,for task01 threeconceptualdeigns of the building are sketched. For each design its merits and demerits are also discussedandoneparticulardesignedisfinalized.Fortask2,modelisvalidatedbycomparingthebendingmomentandreactionforcevaluesfromthecomputeranalysiswithresultsfrommanualcalculation.Fortask3,twoloadcasesareappliedtotheselectedlayoutandsummaryofmaximumbending momentandshearforceiscalculated.

TASK01:

Conceptualdesignofthebuilding

Brainstorm with your partner and come up with three sketches of possible columns andbeams layout. Discuss the merits and limitations of each sketch. You are to choose onelayoutforfurtheranalysis.

Layout01:ConventionalSlabdesignwithflatslabsystemSlab area:7500mmx10000mm

10000/7500=1.33<2(Therefore,Twowayslab)

Advantages:

Economicalstructuresincethenumberofcolumnsareless.

Canbeconstructedinlesstime,sincenocomplexstructureisinvolved.

CarpetareaisincreasedduetolessnumberofcolumnsDisadvantages:

Designwillbedifficultsincetheslabsaretwoway.

Extracarewhiledesigningsinceloadisdistributedonlessnumberofcolumnandbeam.

Layout02:OneWaySlab(ConventionalSlabdesignwithflatslabsystem)

Slabarea:5000mmx10000mm

10000/5000=2=2(Therefore,onewayslab)

Advantages:

Designscalculationwillbeeasier,sinceit’saonewayslabdesign

LesscomplexityInvolved,sincestructureissimple.Disadvantages:

Foronewayslabs,duetotheirhugedifferenceinlengths,loadisnottransferredtotheshorterbeams

Layout03(hollowcoreslabdesign)Slab area:3000 mmx4000mm

4000/3000=1.33<2(Therefore,Twowayslab)

Advantages:

reducingthecostandself-weight

easyconstruction

excellentsoundandfireresistance

Disadvantages:

hardtostrengthenandrepair

hardtoliftandmove

easytobedamageduringtransport

expensiveforsmallspan

Reasonforchoosing

Since,thedesignhasonewayslab,calculationswillbemudistributionwillbealsouniformandthicknessofthecolumnLayout01.Layout02willbealsomoreeconomicalthanlayoutare farlesserthan layout03. In layout03,slab isdesignedaexpensivetoconstructascomparedtotheotherlayouts.

cheasierthanothertwo.Loadwillnotbethatmuchhighunlike03,sincethenumberofcolumn

shollowslab,whichwillbevery

ChosenLayout:Layout03

TASK02:

Maximum+vemomentlocations18.75–10x=10

x=1.875metersand8.125meters(symmetrical)Maximum-vemoment at5meters

Maximum+vemoment=0.5×1.875 x18.75=17.58kN

ii.ValidationofmodelusingSpaceGas

Fig.1:Reactionforcesforthecontinuesbeam

Fig.2:ShearForceDiagramfor thecontinuousbeam

Fig.3:BendingMomentdiagramfor thecontinuous beam

Fig.4:Positionvsbendingmomentfrom0-5m

Fig.5:Positionvsbendingmomentfrom5-10m

TASK03:

DesignLoadCombinations:

DensityforReinforcedConcreteGrade32=2450kg/m2

Tributaryareaof5mactingalongthebeamandthicknessofslabis180mm=0.18mWeknowthat,

LiveLoadRatingforOfficeflooris3kPaSuperimposedDeadloadis1kPa

ForRoof,Deadload=0.5kPaandLiveLoad=1kPa

AssumingfloorsprovidesthemaximumbendingmomentandShearforceSelf-weightofslab=25.5kN/m3x0.18mx 1m=4.41kNm

Now,WSDL=1kPax1m=1kNm

Therefore,totalDeadload,G=4.41+1=5.51kNmWLL=3kPax1=3kNm

Therefore,Q=3kN/m

Asperassignmenttherearetwoloadcases:

Case1:1.2G+1.5Q=1.2x(5.51)+1.5 x(3)=10.992kN/m

Case2:0.8G=0.8 x(5.41)=4.328kN/m

Assumptions:

Designcalculationsforroofareexemptedforthepreliminarycalculations,sincetheloadson the roof aresmaller ascomparedtothefloors.

Thedesignlayouthasonewayslab,thereforeanalysisisdoneonlyonthecriticaldirectioni.e. (15m)of theslabs.

Formax.bendingmomentandshearforcecalculations,slabistreatedasabeamwith1meterwidth15meterlength and0.18mdepth.

Fordesigncalculations,externalsupportistakenaspinnedandinternalsupportasroller supports.

Forthisreport,Windloadisexemptedsincewindloadisassumedtoberesistedbytheshearwallslocatedattheedges ofthebuilding.

SPACEGASSANALYSIS:

Theconsideredbeamhas3spanstherefore,itwillhavetotal8combinationforapplicationofloadsonitsdifferentspans. Followingtableshowsthedifferentloadcombinations:

Figure6.Maximum&minimumbendingmomentfromallloadcombinations

Figure7.Maximum&minimumshearforcefromallloadcombinations

Maximum bending moment and shear force from Space Gass (For appendix for individualloadcase BMandSF diagrams)

MaximumBendingMoment

Combinations

MaximumPositive(kNm)

MaximumNegative(kNm)

1

21.95

-27.48

2

20.86

30.26

3

25.42

-19.15

4

20.86

-30.26

5

24.26

-21.93

6

15.2

-19.15

7

24.26

-21.93

8

8.64

-10.82

Maximumcriticalnegativemomentsis-30.26kNmat5.0m&10mfromtheleftfromCombinations2andcombination4.

Maximumcriticalpositivemomentsis25.42kNmat2.08m&12.92mfromtheleftfromCombinations3.

MaximumShearForce

Combinations

MaximumPositive(kN)

MaximumNegative(kN)

1

32.98

-32.98

2

33.53

-30.26

3

31.31

-31.31

4

30.26

-33.53

5

23.09

-31.87

6

27.48

-27.48

7

31.87

-23.09

8

12.98

-12.98

MaximumcriticalnegativeShearforceis-33.53kNat5.0mfromtheleftfromCombinations4.

Maximumcriticalpositivemomentsisalso33.53kNat10mfromtheleftfromCombinations2.

SIMPLIFIEDCALCULATIONS:

UsingAS3600(2018)Cl.6.10.2.

Letthewidthofthebeambe300mm,

Fdistheuniformlydistributeddesignloadperunitlength=10.992(FromCase1,1.2G.+0.8Q)Therefore,

Ln1= 5000-300-300/2= 4550 mmLn2=5000-300/2-300/2=4700mmLn3=5000-300-300/2=4550mm

NegativeBendingMoments:(UsingAS3600(2018)Cl.6.10.2.2)

0mfromleft,

Atinteriorfacesofexteriorsupportsformembersbuiltintegrallywiththeirsupports

Forslabsandbeamswherethesupportisabeam

• =FdLn2/24

• =10.992x(4.55)2/24

• =-9.48kNm

5mfromleft,

Atthefirstinteriorsupport

morethantwospans

• =FdLn2/10

• =10.992x(4.77)2/10

• =-25.01kNm

10mfromleft,

Atthefirstinteriorsupport

morethantwospans

• =FdLn2/10

• =10.992x(4.77)2/10

• =-25.01kNm

15mfromleft,

Atinteriorfacesofexteriorsupportsformembersbuiltintegrallywiththeirsupports

Forslabsandbeamswherethesupportisabeam

• =FdLn2/24

• =10.992x(4.55)2/24

• =-9.48kNm

PositiveBendingMoments:(UsingAS3600(2018)Cl.6.10.2.3)

Inbothendspans,midspan1and midspan2

o=FdLn2/11

o=10.992 x(4.55)2/11

o=20.68kNm

IninteriorspansforDuctilityClassN

o=FdLn2/16

o=10.992 x(4.70)2/16

o=15.07kNm

ShearForceCalculations:(UsingAS3600(2018)Cl.6.10.2.4)

University of MelbourneCVEN90049StructuralTheoryandDesign2

DesignProject:Assignment01

Inanendspan,VA

Atthefaceoftheendsupport

VA=FdLn/2=10.992x(4.55)/2=25.01kN

Inanendspan,VB

Atthefaceoftheinteriorsupport

VB’=1.15FdLn/2= 1.15 x10.992x (4.55)/2= 28.76kN

Ininteriorspans,VB

Atthefaceofsupports

VB=FdLn/2=10.992x(4.70)/2=25.83kN

Ininteriorspans,VC

Atthefaceofsupports

VC=FdLn/2=10.992x(4.70)/2=25.83kN

Ininteriorspans,VC

Atthefaceofsupports

VC==1.15FdLn/2=1.15×10.992x (4.55)/2=28.76kN

Inanendspan,VD

Atthefaceoftheendsupport

VD=FdLn/2=10.992x(4.55)/2=25.01kN

Inanendspan,VABmid-span

Atmid-span

VD=FdLn/7=10.992x(4.55)/7=7.14kN

Ininteriorspans,VBCmid-span

Atmid-span

VD=FdLn/8=10.992x(4.70)/8=6.45kN

COMPARISONOFSPACEGASSANDMANUALCALCULATION:

Category

Position

CalculatedValues

Maximumvalues inSpaceGass(kNm)

Scenario

Criticallocation

Difference

Percentage

Negativedesignmoment

5 m and 10mfromleft(interiorsupport)

-25.01kNm

-30.26kNm

Combi.2and

Combi.04

5 m and 10mfromleft

-5.25

17.3%

Positivedesignmoment

In both endspans, midspan1and

midspan2

20.68kNm

25.42kNm

Combi.3

2.08mand

12.92 mfromleft

4.74

18.6%

Shearforce

Va=Vd

25.01kN

23.65kN

Combi.3

0mfromleft

-1.36

5.4%

University of MelbourneCVEN90049StructuralTheoryandDesign2

DesignProject:Assignment01

Vb=Vc

25.83kN

30.26kN

Combi.2&

Combi.4

5 m and 10mfromleft

4.43

14.6%

Vb’=Vc’

28.76kN

33.53kN

Combi.2&

Combi.4

5 m and 10mfromleft

4.77

14.2%

Above table shows the discrepancies between the values obtained from space gass andManual Calculation. It is to be noted that percentage deviation between both is not morethan 20 percentage. Reason for this might be that the Space gass have considered all thepossible load combinations which can be made from case 1 and case 2. While manualcalculation depends upon the formulations given in code and it wold not have taken allthecombinationintoaccount.

Anotherreasonmightbe